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Abstract

This paper makes two contributions to software engineering research. First, we observe that un-
certainty permeates software development but is rarely captured explicitly in software models. We
remedy this situation by presenting the Uncertainty Principle in Software Engineering (UPSE),
which states that uncertainty is inherent and inevitable in software development processes and
products. We substantiate UPSE by providing examples of uncertainty in select software engineer-
ing domains. We present three common sources of uncertainty in software development, namely
human participation, concurrency, and problem-domain uncertainties. We explore in detail un-
certainty in software testing, including test planning, test enactment, error tracing, and quality
estimation. Second, we present a technique for modeling uncertainty, called Bayesian belief net-
works, and justify its applicability to software systems. We apply the Bayesian approach to a
simple network of software artifacts based on an elevator control system. We discuss results, im-
plications and potential bene�ts of the Bayesian approach. The elevator system therefore serves as
an example of applying UPSE to a particular software development situation. Finally we discuss
additional aspects of modeling and managing uncertainty in software engineering in general.
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1 INTRODUCTION

Today's software engineer is expected to develop, maintain and comprehend software systems of
unprecedented size and complexity. The complexity of software systems and their development pro-
cesses is known to be intrinsic and essential [3]. Substantial e�orts in software engineering research
attempt to improve software quality and developer productivity in the presence of complexity.
We contend that attempts to alleviate software complexity are often impeded by the uncertainty
permeating virtually every aspect of software development. In subsequent sections, we provide
supporting evidence for our claim. First, examples of uncertainty in select domains of software
development are presented, followed by a discussion of three common sources of uncertainty in
software engineering. We then present the Uncertainty Principle in Software Engineering (UPSE),
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followed by more detailed expositions of uncertainty in software testing, including test planning,
test enactment, error tracing, and quality estimation. We describe a speci�c technique for modeling
and management of uncertainty, known as Bayesian belief networks or simply Bayesian nets. We
demonstrate the use of Bayesian nets for a simple network of software artifacts and relations based
on an elevator control system. We conclude with a discussion of issues and concerns in uncertainty
modeling, both speci�cally using Bayesian nets as well as in general.

We wish to note that uncertainty abounds in many aspects of software development, as well as
in other engineering disciplines and in everyday situations (For uncertainty in everyday situations,
see, for example, [38], pp. 460.). A detailed exposition of uncertainty in general is therefore beyond
the scope of this paper. We hope that UPSE nevertheless identi�es an opportunity for future
investigations and provides a solid foundation for broader discussions of uncertainty modeling in
software engineering. We encourage the reader to consider occurrences and in
uences of uncertainty
in her own domains of interest and expertise.

1.1 Uncertainty in Software Engineering Domains

Here, we present four select domains of software engineering where uncertainty is evident. Later,
we discuss uncertainty in software testing in greater detail. For each domain, we include questions
that arise frequently and indicate potential uncertainties. These questions often require answers of
degree as opposed to binary yea or nay. Later, we show that these questions may be addressed by
means of probability values.

1.1.1 Uncertainty in requirements analysis

Successful software development is often hindered by the generally poor state of most requirements
descriptions. Software requirements analysis typically include learning about the problem and prob-
lem domain, understanding the needs of potential users, and understanding the constraints on the
solution. Investigations of the software crisis indicate that poor up-front de�nition of requirements
is one of the major causes of failed software e�orts [32]. This hindrance should not be attributed
to incompetence of system users or designers, but rather to Humphrey's requirements uncertainty
principle [21]: \For a new software system, the requirements will not be completely known until
after the users have used it." This uncertainty is later ampli�ed by uncertainties introduced when
informal user requirements are captured (at least semi{) formally in a requirements speci�cation
document.

Analysis of software requirements therefore inevitably introduces uncertainties, including: Who
will be the real system users? What are users' needs and expectations? How well is the problem
domain understood? How rigorously, accurately and su�ciently are domain understanding and
user needs and expectations captured in the requirements speci�cation document?

1.1.2 Uncertainty in the transition from system requirements to design and code

Software development typically requires the system to be represented at multiple levels of ab-
straction, including, for example, requirements analysis models, design models, and source code
implementations. Transitioning between di�erent levels of abstraction, however smooth, often in-
troduces uncertainties, including: How well does the design model correspond to the requirements
analysis model? How well does the implementation correspond to the design? How many of the
speci�ed requirements are indeed met?
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1.1.3 Uncertainty in software re-engineering

Software re-engineering includes reverse engineering of an existing system into higher-level archi-
tectural descriptions, followed by forward engineering of a revised system implementation [40, 15].
Thus, in addition to forward-engineering uncertainties, software re-engineering also includes the
following uncertainties: How well does available system documentation correspond to program
source code? How accurately do models that were reverse-engineered from program source code
represent domain abstractions [15]? To what degree can original system documentation be used in
the reverse engineering process? For a detailed exposition of uncertainties in reverse engineering
and re-architecting, see [40].

1.1.4 Uncertainty in software reuse

Software reuse is a software engineering domain where uncertainty has been recognized and dealt
with extensively. Prieto-Diaz and Arango developed a faceted classi�cation scheme that uses con-
ceptual distance graphs to measure similarity among software components during search and re-
trieval activities [33, 34]. Special sessions on uncertainty in software reusability were held at the
1994 and 1996 IPMU conferences, including papers on, among others, uncertainties in the compo-
sition of reusable components [27] and in object recovery [14].

E�ective reuse of software components therefore introduces several uncertainties, including:
How to specify the interface of a reusable component completely and su�ciently? What is one's
con�dence that an existing (i.e., available for reuse) component meets one's usage needs? Given a
reusable component, how can it be tailored to existing project constraints and assumptions?

1.2 Sources of Uncertainty in Software Engineering

Uncertainty occurs in software engineering for di�erent reasons and stems from multiple sources.
Three example sources of uncertainty are described below.

1.2.1 Uncertainty in the problem domain

A software system typically includes one or more models of the \real world" domain in which it
operates. The real world, however, is full of uncertainties, and therefore a system that models the
real world inevitably re
ects domain uncertainties. Domain uncertainties are often only implied
or simply ignored in the system's domain model. This may lead to discrepancies between the real
world and system assumptions and actions, which may in turn lead to risks and hazards. Also,
in embedded systems, there are uncertainties with respect to external software, hardware, and
mechanical components. Ignoring these uncertainties may be hazardous, possibly even fatal 1.
Uncertainty also exists in the natural and physical sciences. According to Heisenberg's uncertainty
principle, for instance, the presence of an observer may a�ect scienti�c observations such that
absolute con�dence in observed results is not possible.

1.2.2 Uncertainty in the solution domain

Software systems constitute solutions to real world problems. Software solutions may introduce
additional uncertainties above and beyond those attributed to the problem domain. A known ex-
ample of solution domain uncertainty, discussed next, occurs in concurrent-program debugging.

1Leveson and Turner [24] report on the Therac incidents, where software uncertainties were deemed impossible
and therefore were not considered by the manufacturer of a medical radiation device.
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The key di�culty in debugging concurrent programs is due to race conditions, which introduce
uncertainty, because erroneous program behavior observed in one execution may not be evident in
subsequent executions [26]. Moreover, any attempt to \probe" the program for additional infor-
mation, for example by instrumenting it, may adversely a�ect the probability of reproducing the
erroneous behavior. This is often referred to as the \probe e�ect" [12, 13] and is closely related to
Heisenberg's uncertainty principle in that by attempting to observe program behavior, the probes
may inadvertently a�ect the outcome of the observation. Consequently, this uncertainty has been
referred to as \Heisenbugs" [26].

1.2.3 Human participation

The active role played by humans in virtually every stage of the software lifecycle inevitably in-
troduces uncertainty and unpredictability into software development. That software development
is still largely human-intensive may seem trivial, yet surprisingly few methods exist that explicitly
model the inexact and uncertain nature of human involvement and its consequences for software
processes and products. For example, rule-based formalisms for software-process modeling, such as
Marvel/Oz [20] and Merlin [22], represent process steps and process decisions as rules, but do not
accommodate explicit modeling of uncertainty in those rules.

1.3 Principles of Software Engineering

In 1968, the NATO conference held in Garmisch, Germany [28] endorsed the claim that software
construction is similar to other engineering tasks and that software development must therefore \be
practiced like an engineering discipline." Engineers in classical engineering disciplines are equipped
with processes, methodologies, standards, and tools that have been evolved, tested, and proven
successful. The use of standard procedures, materials, and building blocks limits the degrees of
freedom and allows for engineering projects to proceed in predictable, controllable, and manageable
fashion.

At the foundation of classical engineering disciplines one often �nds a small set of underlying
principles and laws of nature that govern the behavior of systems and guide their development. In
the physical sciences, for instance, one �nds Newton's laws of gravity, Einstein's theory of relativity,
Kepler's laws of planetary motion, Heisenberg's uncertainty principle, and the laws of thermody-
namics. Laws and principles of the physical world are usually discovered, not invented, by observing
physical systems. Such principles are con�rmed and substantiated by scienti�c experiments that
are controllable and repeatable and whose results are highly predictable.

In contrast, software systems appear unconstrained by any laws or principles. It has long been
recognized, however, that software engineering would do well by a standard set of procedures,
guidelines and principles. A recent book by Davis [8] documents 201 such principles. Ghezzi
et al [16] identify seven principles at the heart of all software development activities. Brooks
contributed two key principles to software engineering knowledge, namely \the mythical man-
month" [2] and \no sliver bullet" [3].

Software engineering principles should capture the nature and behavior of software systems and
guide their development. Such principles would help in restricting degrees of freedom in software
development and achieving degrees of predictability and repeatability similar to those of classical
engineering disciplines. We observe that in order for a principle of software engineering to exhibit
relevancy and applicability similar to other engineering principles, it should be de�ned and presented
generally and abstractly, be applicable and instantiable in practice to speci�c software development
situations, and be observed and substantiated repeatably and predictably.
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One can con�rm that software-engineering principles, such as those recorded by Davis, Ghezzi,
Brooks, and others, indeed meet the three \principle criteria" de�ned above. In this paper, we
de�ne and justify UPSE and contend that it also meets the three principle criteria above. We now
proceed to de�ne UPSE.

2 THE UNCERTAINTY PRINCIPLE IN SOFTWARE ENGI-

NEERING

Software development is a complex human enterprise carried out in problem domains and under cir-
cumstances that are often uncertain, vague, or otherwise incomplete. Development must progress,
however, in the presence of those uncertainties. The Uncertainty Principle in Software Engineering
(UPSE) is therefore stated as follows:

Uncertainty is inherent and inevitable in software development processes and products.

UPSE is, like other principles of software engineering, a general and abstract statement about
the nature of software development and is applicable throughout the development lifecycle. The
principle should still, however, be applied judiciously and appropriately. The next section describes
key issues and concerns that need to be addressed when applying UPSE.

2.1 Applying UPSE

Software engineering processes and products include elements of human participants (e.g., designers,
testers), information (e.g., design diagrams, test results), and tasks (e.g., \design an object-oriented
system model," or \execute regression test suite"). Uncertainty occurs in most if not all of these el-
ements. A software modeling activity would therefore do well to apply UPSE by explicitly modeling
one or more uncertainties, taking into account the issues discussed below.

2.1.1 What is the goal of the modeling activity?

A model of a software process or product is an abstraction that ignores some detail. Software mod-
els are developed for di�erent reasons and to meet di�erent goals and, consequently, may include
di�erent uncertainties. If, for example, the goal of software modeling is to represent key system
abstractions or artifact architecture, then uncertainties regarding conceptual and architectural de-
cisions may need to be represented explicitly. Alternatively, if a software process is modeled to
facilitate project planning and prediction, then uncertainties regarding schedule and budget esti-
mates, progress monitoring, and project risks may be modeled explicitly.

2.1.2 When is uncertainty modeling relevant?

Despite the generality of UPSE, uncertainty-modeling is not necessarily meaningful or equally ap-
plicable to all aspects of a software-engineering e�ort. Consider, for example, a requirements-change
scenario where a new feature is requested for an existing software system. The challenging task of
accommodating the new requirement often necessitates substantial changes to system architecture
and implementation, and therefore leads to uncertainties. On the other hand, a simpler, automat-
able task such as creating a new release version or updating system con�guration information is
less likely to introduce uncertainty 2.

2Note, however, that automatable operations that do not require human intervention are not necessarily free of
uncertainties.
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2.1.3 What notation, formalism, or approach is used for modeling uncertainty?

Notations and techniques for modeling uncertainty, vagueness, and fuzziness, have been studied ex-
tensively in domains of arti�cial intelligence [38, 19]. Di�erent approaches for modeling uncertainty
have been advocated based on di�erent mathematical models as well as di�erent assumptions about
the sources and nature of uncertainty. A detailed exposition of current approaches to uncertainty
modeling is beyond the scope of this paper. Instead, we focus on a particular uncertainty modeling
technique, called Bayesian belief networks.

3 UNCERTAINTY IN SOFTWARE TESTING

Software testing has been described as \the search for discrepancies between what the software can
do versus what the user or the computing environment wants it to do" [17]. We consider software
testing broadly to include test planning, test enactment, error tracing, and quality estimation. We
identify uncertainties associated with each activity below.

3.1 Test Planning

We identify three aspects of test planning where uncertainty is present: the artifacts under test,
the test activities planned, and the plans themselves.

Software systems under test include, among others, requirements speci�cations, design repre-
sentations, source code modules, and the relationships among them. These software artifacts are
produced by requirements analysis, architectural design, and coding processes, respectively. Fol-
lowing UPSE, uncertainty permeates those development processes and, consequently, the resulting
software artifacts. Plans to test them, therefore, will carry these uncertainties forward.

Software testing, like other development activities, is human intensive and thus introduces
uncertainties. These uncertainties may a�ect the development e�ort and should therefore be ac-
counted for in the test plan. In particular, many testing activities, such as test result checking, are
highly routine and repetitious and thus are likely to be error-prone if done manually. This again
introduces uncertainties.

Test planning activities are carried out by humans at an early stage of development, thereby in-
troducing uncertainties into the resulting test plan. Also, test plans are likely to re
ect uncertainties
that are, as described above, inherent in software artifacts and activities.

3.2 Test Enactment

Test enactment includes test selection, test execution, and test result checking. Test enactment
is inherently uncertain, since only exhaustive testing in an ideal environment guarantees absolute
con�dence in the testing process and its results. This ideal testing scenario is infeasible for all but
the most trivial software systems. Instead, multiple factors exist, discussed next, that introduce
uncertainties to test enactment activities.

Test selection is the activity of choosing a �nite set of elements (e.g., requirements, functions,
paths, data) to be tested out of a typically in�nite number of elements. Test selection is often based
on an adequacy or coverage criterion that is met by the elements selected for testing. The fact that
only a �nite subset of elements is selected inevitably introduces a degree of uncertainty regarding
whether all defects in the system can be detected. One can therefore associate a probability value
with a testing criterion that represens one's belief in its ability to detect defects. An example of
assigning con�dence values to path selection criteria is given below.
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Test execution involves actual execution of system code on some input data. Test execution
may still include uncertainties, however, as follows: the system under test may be executing on a
host environment that is di�erent from the target execution environment, which in turn introduces
uncertainty. In cases where the target environment is simulated on the host environment, testing
accuracy can only be as good as simulation accuracy. Furthermore, observation may a�ect testing
accuracy with respect to timing, synchronization, and other dynamic issues. Finally, test executions
may not accurately re
ect the operational pro�les of real users or real usage scenarios.

Test result checking is likely to be error-prone, inexact, and uncertain. Test result checking is
a�orded by means of a test oracle, that is used for validating test results against stated speci�ca-
tions. Test oracles can be classi�ed into �ve categories [36], listed in decreasing order of uncertainty
(or, alternatively, increasing order of con�dence), as follows: human oracles, input/output oracles,
regression test suites, validation test suites, and speci�cation-based oracles. Speci�cation-based
oracles instill the highest con�dence, but still include uncertainty that stems from discrepancies
between the speci�cation and customer's informal needs and expectations.

We have modeled uncertainties in test oracles for an extended system test scenario, but space
does not permit its inclusion in this paper. Instead, we provide two smaller and simpler examples
of modeling uncertainty in software testing. The �rst example, described next, is in the domain of
path selection criteria.

3.3 Example: Path Selection Testing Criteria

Here, we add a measure of uncertainty to a previous result in comparison of data 
ow path selection
testing criteria. In [5], the authors present a subsumption hierarchy that imposes a partial order on
di�erent data 
ow path selection criteria with respect to their ability to provide adequate coverage
of a given program. The subsumption relationship may be recast in terms of uncertainty or degree
of con�dence, as follows: if criterion A subsumes criterion B, then one has more con�dence in the
defect-detection ability of A than that of B3. Con�dence in the defect-detection ability of a given
testing criterion may be quanti�ed by means of a probabilistic value between 0 and 1. This is
illustrated in Table 1, which shows a plausible assignment of probabilistic con�dence values for a
dozen path selection criteria from [5]. Table 1 raises some important questions, however, discussed
next.

3.3.1 Why are con�dence values relatively low?

Low con�dence values imply that even a \strong" path selection criterion does not incur high levels
of con�dence. This is because path selection does not take into account, for example, data value
selection. Some defects are only revealed by particular data values, but not by others. Therefore,
low con�dence values re
ect the criteria's inability to guarantee defect detection.

3.3.2 What are the constraints, if any, on the assignment of con�dence values?

The only constraint on assigning con�dence values is that if A subsumes B in the subsumption
hierarchy of [5], then A's con�dence value should be equal to or higher than B's. Thus, there are
in�nitely many possible assignments of con�dence values that preserve the partial subsumption
order of path selection criteria.

3As discussed in [5], even if A subsumes B, it is still uncertain whether A is in fact better at detecting defects,
since demonstrating the latter would require that empirical data be collected to substantiate the graph theoretic
proofs of subsumption.
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Path Selection Criterion Con�dence Value

All-Paths :65
All-DU-Paths :59

Ordered Context Coverage+ :61
Context Coverage+ :55
Reach Coverage+ :45

All-Uses :45
All-C-Uses/Some-P-Uses :33
All-P-Uses/Some-C-Uses :33

All-Defs :25
All-P-Uses :2
All-Edges :15
All-Nodes :1

Table 1: Con�dence Values for Data Flow Path Selection Criteria

3.3.3 How are con�dence values determined?

Con�dence values, such as shown in Table 1, are often determined by consultation with domain
experts. Other techniques exist, however, for establishing con�dence values, including: values
computed using software reliability or cost-estimation models; values obtained from empirical,
statistical, or historical data; or else values acquired dynamically during software-process execution.
Some techniques and their implications are discussed further in subsequent sections.

3.3.4 How are con�dence values used?

Con�dence values may be useful, for example, for choosing the most appropriate testing criterion
given project requirements and constraints. A safety-critical system, for instance, may require
that only testing criteria with con�dence levels in the ultrahigh region be used. In contrast, a
commercial software product may weigh the cost and duration of testing against time-to-market
constraints. We propose that, in both cases, probabilistic measures of con�dence, for example, in
the defect-detection abilities of testing criteria, be employed in the decision-making process.

3.4 Quality Estimation

Software testing is instrumental in establishing quality and high assurance in software processes and
products. A key concern of software testing is \When to stop testing?", which is often answered
by means of quality estimation. We consider reliability testing and reliability growth modeling to
be among the most mature techniques for software quality assessment [25] and therefore focus on
them below.

Considerable work in software reliability modeling is based on a probabilistic notion of uncer-
tainty. A probabilistic model of software behavior is needed since neither program testing nor
formal proof of program correctness can guarantee complete con�dence in the correctness of a pro-
gram [17]. Software reliability measures to what degree a software system behaves as expected,
thereby modeling system behavior as observed by its users, as opposed to static or dynamic prop-
erties of the code itself. Examples of measures used in software reliability include frequency of
failure and mean time to failure. Software reliability may therefore be de�ned as the probability
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that software faults do not cause a program failure during a speci�ed exposure period in a speci�ed
use environment [17].

Hamlet [18] and Littlewood [25] extend existing reliability theory by de�ning \software de-
pendability" as a statistical measure of software quality. Hamlet incorporates Blum's idea of self-
checking/self-correcting programs [1] into reliability such that the dependability of a program P at
input X is de�ned as the con�dence probability that P is correct (with respect to its speci�cation)
at X .

Thus, software reliability models not only demonstrate that uncertainty may be measured and
represented explicitly but they can also be used to estimate future software quality. Prediction
of future reliability assumes that software systems are used with statistical regularity. This as-
sumption, however, introduces uncertainty, since future users may exhibit vastly di�erent usage
patterns. We conclude that probabilistic measures of software reliability can be used to provide
initial estimates of con�dence levels in software artifacts and relations. This is discussed in more
detail in subsequent sections.

3.5 Error Tracing

When a software failure is detected, the source of the error must be found. The error may have
been introduced at an early stage of development, such as requirements analysis or system design,
or later during coding. E�ective error tracing, also known as the \discovery task" [10], requires that
software artifacts are interrelated among themselves as well as to informal customer requirements.

Software traceability is therefore the creation, management, and maintenance of relations from
one software entity to other entities [9]. Software development environments, including, among
others, Marvel/Oz [20], Merlin [22], and Arcadia [23], support software traceability by means of
tool integration, object management systems, and hypertext capabilities. For a large network of
software artifacts and relations, however, traceability is still hampered by the cognitive di�culty
of sifting through large volumes of interrelated information. Software engineers are likely to get
disoriented in large software spaces due to uncertainties encountered during navigation, such as
\Where am I?", \How did I get here?", and \Where can I go next?" [41, 39]. This di�culty is akin
to the hypertext-navigation problem known as \lost in hyperspace" [30].

We conclude that explicit modeling of uncertainty is relevant and applicable to many software
engineering situations and may help ameliorate practical problems, such as e�ective navigation in
large software spaces.

4 MODELING UNCERTAINTY

We suggest that uncertainties associated with one or more properties of software artifacts be mod-
eled and maintained explicitly. A network of software artifacts, annotated with uncertainty values,
can then, for example, be navigated more e�ectively by guiding the software engineer to artifacts
that are more likely to exhibit a particular property. We now describe the Bayesian approach to
uncertainty modeling.

4.1 Bayesian Belief Networks

Bayesian belief networks have been used in arti�cial intelligence research to provide a framework
for reasoning under uncertainty [31, 29]. Bayesian networks have been used extensively in a wide
range of applications [19]. Speci�cally, the Bayesian approach has been applied successfully to large
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text and hypertext search databases in the domain of information retrieval [11, 7] and to validation
of ultrahigh dependability for safety-critical systems [25].

Informally, a Bayesian network is a graphical representation of probability relationships among
random variables. A Bayesian network is a Directed Acyclic Graph (DAG), where graph nodes
represent variables with domains of discrete, mutually exclusive values. In the following, we use
\nodes" when discussing structural aspects of Bayesian networks and \variables" when discussing
probabilities. Directed edges between nodes represent causal in
uence. Each edge has an associated
matrix of probabilities to indicate beliefs in how each value of the cause (i.e., parent) variable a�ects
the probability of each value of the e�ect (i.e., child) variable.

The structure of a Bayesian network is de�ned formally as a triplet (N;E; P ), where N is a set
of nodes, E � N �N a set of edges, and P a set of probabilities. Each node in N is labeled by a
random random variable vi, where 1 � i � jN j. Each variable vi takes on a value from a discrete
domain and is assigned a vector of probabilities, labeled Belief(vi) or Bel(vi). Each probability
in Bel(vi) represents belief that vi will take on a particular value. D = (N;E) is a DAG such
that a directed edge e =< si; ti >2 E indicates causal in
uence from from source node si to target
node ti. For each node ti, the strengths of causal in
uences from its parent si are quanti�ed by
a conditional probability distribution p(tijsi), speci�ed in an m � n edge matrix, where m is the
number of discrete values possible for ti and n is the number of values for si.

The structure of a Bayesian network is usually determined by consultation with experts. Prob-
abilities in edge matrices can either be estimated by experts or compiled from statistical studies.
An important assumption of Bayesian networks is variable independence: a variable is independent
(in the probabilistic sense) of all other non-descendant variables in the network except its parents.

Bayesian updating occurs whenever new evidence arrives. Here, we follow Pearl's original
updating algorithm [31], based on a message passing model, where probability vectors are sent as
messages between network nodes. Bayesian updating proceeds by repeatedly sending messages,
both \up" the network from a child node to its parent and \down" the network from a parent node
to its child, until all nodes are visited and their belief values, if needed, revised. This updating
scheme supports distributed implementation, since each node can execute in a separate execution
thread and be updated by way of message passing.

Pearl's updating algorithm requires that two additional vectors, labeled � and �, be used. �

vectors are used to send messages up the network, from a child node to its parent. � values are
typically set to one initially 4, before any evidence is propagated, but are later revised to re
ect
new evidence. When new evidence is observed, for example, if \test suite T detected a defect in
code unit M ," then the corresponding � vector is revised to (10) or (

0
1) as appropriate. Revised �

values are sent as a message up to the revised node's parent and multiplied by the edge matrix.
The resulting vector is multiplied by the parent node's � vector to yield a new �. This upward
propagation repeats until the network's root node is reached. Similarly, downward propagation
proceeds by means of messages, indicated by � vectors, sent from a parent node to its child, until
belief values for all network nodes are updated.

Bayesian updating of an arbitrary network (i.e., where cycles may exist in the underlying undi-
rected graph) is known to be NP{hard [6], but if the network is tree-structured 5, Pearl's updating
algorithm is quadratic in the number of values per node and linear in the number of children per
parent. For a more comprehensive description of Pearl's updating algorithm, see [31, 29].

4Unlike Belief and � vectors, values in the � vector do not need to sum to one.
5In this paper, we limit our discussion to tree-structured software networks. Bayesian updating algorithms for

general DAGs exist, however, and are polynomial in time and space.
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4.1.1 Why Bayesian Networks?

We identify compelling reasons for using Bayesian networks for modeling uncertainty in software
engineering. First, it is a mechanism to apply UPSE in practice, i.e., Bayesian networks provide
a mathematically sound technique for explicit modeling of uncertainties inherent in software de-
velopment. Moreover, their graph structure matches that of software systems. Thus, it is possible
to impose a Bayesian network on a software system by associating belief values with artifacts and
conditional probability matrices with relations. Note that the notion of Bayesian belief corresponds
to our earlier notion of degree of con�dence. In the following, we use \belief" speci�cally to refer
to a Bayesian value, whereas \con�dence" is used more generally to indicate subjective assessment
of a software entity. In addition, since more than one belief value may be associated with a single
software entity, multiple Bayesian networks can be imposed on a single software system.

Also, a software development process is highly dynamic in that software artifacts, relations, and
associated beliefs are modi�ed frequently. Bayesian networks are able to re
ect dynamic changes in
a software system by means of Bayesian updating. Furthermore, one's beliefs in software artifacts
are typically in
uenced by many factors. This is easily accommodated in Bayesian networks since
evidence from multiple sources can be combined to determine the probability that a variable has a
certain value. Finally, we believe that by using Bayesian networks one can address real problems of
software engineering, including, among others, e�ective navigation of large software spaces, deciding
when to stop testing, and identifying bottlenecks and high-risk components.

Our choice of Bayesian networks, however justi�ed, does not imply that other uncertainty-
modeling techniques should not be considered. Rather additional investigation of other approaches
is required in order to study their possible uses and compare their relative merits versus the Bayesian
approach.

5 THE ELEVATOR SYSTEM EXAMPLE

As part of a large e�ort to demonstrate integration capabilities of the Arcadia research project [23],
we have developed a complete software solution for an elevator control system. The elevator system
is a classic problem that has been used to demonstrate software engineering techniques in general
and speci�cally in the area of formal speci�cation languages [37, 36]. The elevator system is required
to control n elevators in a building with m 
oors. The problem concerns the logic required to move
elevators between 
oors according to speci�ed functional requirements as well as safety, liveness,
and fairness constraints.

Software artifacts in our elevator system solution include a functional decomposition of re-
quirements, developed using REBUS; formal requirements speci�cations, including model-based
speci�cations in Z and interval logic speci�cations using both RTIL and the GIL toolset; object-
oriented design diagrams, using Software Through Pictures' OOSD/Ada notation; code modules
implemented in Ada; and test suites, test criteria, and test oracles, developed using TAOS [35].

Software artifacts in the elevator system are interrelated by means of artifact relationships, as
follows: Ada code units are related to OOSD design speci�cation elements; design speci�cations are
related to requirements speci�cations; requirements speci�cations are related to test suites and test
oracles that are used to ensure that the system meets speci�ed requirements; test suites are related
to code units that are to be tested against the requirements; and test criteria, used to determine
whether the code is adequately tested, are related to code units and test suites.

We applied the Bayesian approach to the elevator system solution. Software artifacts and
relations were assigned probability values that were determined by consultation with a domain
expert. Though we have assigned belief values and carried out Bayesian updating for the entire
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elevator system, space does not allow for the complete example to be shown. Instead, for clarity
and brevity, we demonstrate the Bayesian approach for a partial unit test scenario that is modeled
by a subnetwork of only four elevator-system artifacts. The complete elevator example can be
found in [42].

5.1 The Unit Test Scenario

In the unit test scenario, a software entity is considered valid if it is traceable to original customer
requirements and meets customer needs and expectations (cf. [16]). Note that absolute con�dence
in an entity's validity is hard to achieve in practice. Instead, we associate a probabilistic belief
value with the statement \this entity is valid," and assign those belief values to system entities
accordingly.

In the unit test scenario, design node D represents an OOSD design speci�cation element, for
example, Elevator Controller Interface Spec. A probability value is associated with D, representing
prior belief that D is valid. Similarly, module M represents an Ada code unit, for example,
Elevator Controller Package, and is assigned a probability value representing prior belief that M
is valid. Since M implements D, there exists a causal relationship between M and D, indicated by
a directed edge in the network of Figure 1.

In addition, test nodes T1 and T2 represent two test suites, corresponding to two di�erent test
selection criteria, for example, All{Edges and All{Uses. Test suites are executed against code units
in the system's implementation and may succeed or fail. Test suite execution is successful when no
defects are detected, i.e., actual test results match expected results. Expected results for test result
checking are provided either manually or by a test oracle. Here, a code module is considered invalid
if a single defect is detected 6, i.e., if execution of any related test suite fails, which, correspondingly,
sets its belief value to zero. Note, however, that successful test suite execution does not set the
corresponding module's belief value to one, since it does not instill complete con�dence. Rather,
con�dence that M is valid merely increases with each successful test suite execution. This is
con�rmed by the results of Bayesian updating in the unit test scenario, reported below.

The software network of Figure 1 provides a computational framework for updating beliefs in
the validity of entities. In particular, success or failure of test suite execution constitutes new
evidence that is then propagated throughout the network to revise previous beliefs. The initial
state of the network, described next, includes prior beliefs in network nodes, as determined by
consultation with a domain expert.

5.1.1 Initial State of Bayesian Network

We begin with design node D. Con�dence in the validity of design speci�cations varies considerably
among di�erent projects, di�erent design methods, and di�erent designers. In the unit test scenario,
D's prior belief value is determined to be :7. This is recorded in D's belief vector, as follows:

Bel(D) =

 
Bel(D = valid)
Bel(D = invalid)

!
=

 
:7
:3

!

As shown in Figure 1, a � vector, used later for downward propagation, is also associated with
D. Since new evidence is yet to be propagated, D's � values are initially set to the same values as
Bel(D). Similarly, since no propagation has occurred yet, D's � values are all set to 1.

A directed edge from D to M indicates that M implements D. Conditional probabilities in
the corresponding edge matrix represent beliefs that M is valid (or invalid) given that D is valid

6Alternate de�nitions of validity are discussed later.
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(or invalid). These probabilities are determined by a domain expert as follows: if D is valid, then
M is also valid with :6 probability. The probability that M is invalid is, or course, :4. If D is
invalid, however, then M is valid with only :1 probability and invalid with :9 probability. These
probabilities are recorded in the edge matrix between D and M , as shown in Figure 1.

Next, we compute our belief that M is valid by way of downward propagation. This is accom-
plished by computing a � vector for M by multiplying D's � vector (the downward message) by
the transpose of the edge matrix between D andM . The resulting � values are assigned to Bel(M)
and indicate initial belief of 45% in M 's validity. This is shown below and in Figure 1.

Bel(M) =

 
:6 :4
:1 :9

!
T
 
:7
:3

!
=

 
:45
:55

!

Test suite T1 represents All{Edges, a relatively weak testing criterion in the subsumption hierar-
chy of [5]. Table 1 associates a con�dence level of :15 with the defect-detection ability of All{Edges.
We therefore determine the following probabilities for the edge matrix between M and T1: if M
is invalid, then T1 succeeds (i.e., executes successfully) with :85 probability. Correspondingly, T1
fails with :15 probability. IfM is valid, then T1 always succeeds. Similarly, test suite T2 represents
All{Uses, a stronger testing criterion. Table 1 associates a con�dence level of :45 with the defect-
detection ability of All{Uses. This again determines the corresponding edge-matrix probabilities
to be :45 and :55, respectively. The resulting edge matrices are shown in Figure 1. Next, belief
values for T1 and T2 are computed, as before, by means of downward propagation. � values for T1
and T2 are computed by multiplying edge-matrix probabilities by a � message from M . Figure 1
shows the resulting belief values for T1 and T2.

5.1.2 Network State After Executing T1

Figure 2 illustrates the e�ects on the network of successful execution of test suite T1. Bayesian
updating proceeds by means of sending � and � messages up and down the network, as follows:
T1's � vector is revised to (10); T1 sends (10) as a � message to M , where it is multiplied by the
edge matrix; the resulting vector is then multiplied by M 's current � vector, yielding M 's new �.
Next, M 's Belief vector is revised by multiplying the current Belief vector by the new �, yielding
a revised belief value of :49 that M is valid. M then sends a � message to its parent D, which is
used to revise D's � and Belief vectors, as before. The revised belief that D is valid is :72. Finally,
M also sends a � message to T2, where the � values are identical to M 's new belief values. T2
then recomputes its own � and belief vectors.

5.1.3 Network State After Executing T2

Next we consider the e�ects on the network of executing the stronger test suite T2 (All-Uses).
Whether T2 succeeds or fails, belief values in the network are updated by means of propagation
and re-computation of � and � values. If T2 were to fail, a defect has been detected and M is
recognized as invalid. Speci�cally, T2's � vector is set to (01) upon failure, and, after multiplication
by the edge matrix, updatesM 's � and belief vectors to also be (01). Additional upward propagation
from M to D results in a decrease in our belief in the validity of D. But, if T2 succeeds, then M 's
belief value increases to 96.5%, and our belief that D is valid increases to 97%.

13



6 DISCUSSION

The application of a Bayesian or other probabilistic approach to software systems raises some issues
and concerns. Among those we discuss issues deemed most pertinent to this paper (in no particular
order).

6.1 How are belief values interpreted?

In most applications of Bayesian networks (cf. [19]), belief values are associated with observable
phenomena, described using binary True/False statements. When modeling everyday situations,
for example, the prior belief value of the statement \It is sunny" may be determined to be :9, while
the belief value of the statement \The dog is barking" may be :55 [4]. Each statement can therefore
be viewed as an observation on some entity's state, quality or property. Thus, values in a Bayesian
network represent beliefs that an entity is in some state or possesses some quality or property.

Similarly, a single belief value associated with a single software artifact represents belief that
the artifact is in some state or possesses some quality or property. In the unit test scenario,
for example, the observed quality for design and code nodes is validity, whereas a test for the
design node and code unit is quality, whereas a test suite can be in one of two states, \success" or
\failure." In general, however, software artifacts may possess many di�erent qualities, for example,
correctness, robustness, reliability, safety, maintainability, and e�ciency. They can also be in one
of many di�erent states. This implies that multiple Bayesian models may be associated with a
single software network. It also implies that assignment of belief values to artifact qualities must
be consistent with causal relationships in the network. In the unit test scenario, for example, test
suites are used to test the validity of code units, and therefore the observed quality is validity.

6.2 When does a belief value become zero?

The elevator example demonstrates that belief values may be set to zero under certain conditions.
A belief value of zero may have signi�cant implications for other belief values because of Bayesian
updating. Determining whether a belief value should be zero is therefore important as well as
potentially di�cult. This decision is in
uenced, for each belief value, by the quality of the associated
entity.

Assume, for example, that a Bayesian value represents belief that a source code unit is \bug
free" or otherwise correct with respect to speci�ed requirements. In this case, the failure of a single
test suite must cause the belief value to be set to zero (as in the unit test scenario above). It is
also conceivable, however, that test oracles used for test result checking are themselves suspect.
In this case, one has only limited con�dence in the testing process itself, and, consequently, failed
execution of a test suite does not imply a belief value of zero.

Assume a di�erent scenario where a complex software system includes many modules and is
developed under stringent schedule constraints. Here, it might be acceptable for code units to
contain known defects given certain project considerations, including, for example, \How many
defects were detected in the module?", \What kind of defects were detected?", \How costly is defect
elimination during development?", and \How costly would this defect be if it caused operational
failure?". In this case, uncertainty is modeled for a quality other than program correctness, say
\acceptability." Belief values for program acceptability should decrease with each failed execution
of a test suite, but do not necessarily become zero upon single failure. Belief should only become
zero when, for example, a preset threshold (e.g., maximum number of defects allowed) is exceeded.

14



6.3 Where do belief values come from?

To use Bayesian networks, one must specify prior belief values for network nodes as well as con-
ditional probabilities for causal in
uences. Certain independence assumptions hold, as mentioned
earlier, among variables in a Bayesian network, implying that relatively few belief values need be
speci�ed for each node, since they depend exclusively on its parents' belief values [4]. The question
still remains, however, how to obtain belief values initially, discussed next.

Ideally, prior belief values are determined by collecting empirical, historical or statistical data.
This is possible in software projects that collect data on, for example, program bottlenecks and
defect rates. Empirical data may also be available for development tasks, including requirements
analysis, design, coding and testing. For example, empirical data regarding coverage adequacy of
di�erent testing criteria may be used to revisit the belief values in Table 1.

The ideal case, however, is seldom feasible. Instead, Bayesian belief values are usually elicited
from a domain expert who subjectively assesses them. Domain experts include, for example, project
managers, lead programmers, senior designers, test researchers for test-strategy e�ectiveness, and
so on. Note that domain experts are used primarily to determine prior belief values; subsequent
changes to belief values in the network are caused by new evidence by way of Bayesian updating.

7 CONCLUSIONS AND FUTURE WORK

The Uncertainty Principle in Software Engineering (UPSE) states that uncertainty is inherent
and inevitable in software development processes and products. UPSE is a general and abstract
statement about the nature of software development. To demonstrate UPSE, we have chosen
a probabilistic Bayesian approach to uncertainty modeling and applied it to a simple software
network based on an elevator system. The Bayesian approach a�ords dynamic updating of beliefs
during software development. We have discussed some concerns and implications of the Bayesian
approach for software engineering situations.

We believe that much more stands to be gained by explicit modeling of uncertainty in software
engineering. In this paper, we have merely posited UPSE and demonstrated its applicability, using
the Bayesian approach as a point example. In the remaining paragraphs, we discuss additional uses
and future research directions for uncertainty modeling.

7.1 Monitoring the testing process

An important question in software testing is \How much testing is enough?". This question may
be addressed by explicit modeling of uncertainty, if su�cient testing is de�ned in terms of levels of
con�dence in select system entities, for example, its code modules. As testing progresses, con�dence
levels increase as long as test execution is successful. Testing is guided and monitored by continuous
update and comparison of con�dence levels against prede�ned thresholds. Testers are noti�ed and
may take appropriate action whenever thresholds are exceeded. This approach may be especially
useful in safety-critical systems, where con�dence requirements and constraints are often speci�ed
numerically.

7.2 Other software-engineering domains

In this paper, we have focused on software testing uncertainties, but we believe that uncertainty
could and should also be modeled for other domains, including software reuse and re-engineering,
requirements analysis and speci�cation, software design and coding.
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7.3 Other software qualities

In this paper, we have focused on validity, not correctness, as a software quality for which belief val-
ues are represented. We believe, however, that uncertainty should be modeled explicitly for many
other software qualities, including correctness, reliability, fairness, safety, testability, maintainabil-
ity, and e�ciency. As mentioned earlier, qualities associated with entities must be consistent with
causal relationships such that the resulting network is meaningful.

7.4 Other uncertainty modeling techniques

In this paper, we have used Bayesian networks to model uncertainty in software development.
Viable alternatives to the Bayesian approach exist, however, including Certainty{Factor approaches,
Dempster{Shafer approaches, fuzzy logic, and default and monotonic logic [38]. Relative merits
and pitfalls of these techniques should be studied and evaluated against the Bayesian approach in
the context of software engineering situations.

7.5 Modeling uncertainty in software process

In this paper, we have demonstrated that uncertainty can be modeled for both process (i.e., testing
strategies) as well as product (i.e., artifact networks) aspects of software development, with an
emphasis on modeling uncertainty in software products. With respect to modeling uncertainty in
software processes, we believe that software-process modeling formalisms must be augmented to
include uncertainty values; that an environment for supporting de�nition and execution of process
models should include capabilities for representation and interpretation of belief values and should
allow for Bayesian updating of those values; and that Bayesian updating procedures must be carried
out during process execution, such that belief values and con�dence levels are continuously updated
as new evidence arrives.

The provision and update of belief values may be greatly enhanced in process frameworks that
include process measurement capabilities. Such capabilities constitute a rich source of information
regarding the current state of various elements and support the collection of statistical and empirical
data that may signi�cantly improve the accuracy of prior belief value estimation.

We expect that by modeling software process uncertainties, one may achieve a more realistic
representation of the process, enable automated belief revision by means of Bayesian updating, and
support prediction and guidance of future development activities.
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Figure 2: Revised Belief Network After Execution of T1
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